

WHITE PAPER

Infinite Filing Cabinet for Open End™

Presented at the ACCU Spring Conference, April 2003, UK

WHITE PAPER Open End™ Technical Overview

Open End 2006 2 (28)

Anders Chrigström ac@strakt.com
Jacob Hallén jacob@strakt.com
Boyd Roberts boyd@strakt.com

Ronny Wikh rw@strakt.com

Open End
http://www.openend.se

Abstract
The workhorse of the Open End™ system is a server module called the Infinite Filing
Cabinet (IFC™). Using a regular RDBMS as backend, the IFC provides persistent
storage for Python objects. These objects can be stored, retrieved and searched for. In
addition, notification of object creation and modification can be requested. More complex
actions can also be performed when objects transit specified states at optionally specified
times. The IFC does not support the deletion of data; this is performed by deprecation. It
is therefore possible to access any object in any of its prior forms.

WHITE PAPER Open End™ Technical Overview

Open End 2006 3 (28)

1. Introduction ... 5

2. IFC Basics... 5

2.1 IFC Object persistence (deleting objects).. 5

2.2 The IFC from the database point of view... 6

 2.2.1 ER graph use with relational databases .. 6

 2.2.2 Common IFC table contents .. 7

3. The IFC data structure .. 9

3.1 Attributes.. 9

3.2 Business Logic Module, BLM... 10

3.3 Task Object Class, TOC .. 11

3.4 Data Object, DO... 11

3.5 Object access implementation... 12

3.6 Log objects... 13

 3.6.1 Action Log Object .. 13

3.7 Substructures in the IFC .. 13

 3.7.1 Tuple list... 13

4. Connection management.. 14

4.1 Business logic connections and security ... 14

4.2 User client connections and security ... 14

5. Object interface ... 15

5.1 Queries... 15

5.2 Requests .. 16

5.3 Commits ... 16

6. Object cache ... 17

6.1 Basic design... 17

6.2 Interface ... 18

6.3 Overall management.. 18

6.4 Resizing ... 19

7. Dynamic change notification ... 19

7.1 Result set changes .. 19

7.2 Finding a minimal subset of queries .. 19

7.3 Evaluating query condition groups with a modified object........................... 20

7.4 Evaluation Optimisations ... 21

8. Events mechanism.. 21

8.1 Transition expressions ... 22

8.2 Management .. 23

WHITE PAPER Open End™ Technical Overview

Open End 2006 4 (28)

8.3 Timers .. 24

8.4 Rule based events ... 24

9. Indexes.. 24

10. Communication objects... 25

10.1 Marshaling.. 25

 10.1.1 Query Marshaling .. 26

 10.1.2 Request Marshaling... 26

11. Platform... 26

12. Performance.. 26

13. Future directions ... 26

13.1 Timesharing ... 26

13.2 Optimisation ... 27

13.3 Concurrency... 27

13.4 Redundancy... 27

13.5 Query caching.. 27

13.6 Point in time access ... 27

WHITE PAPER Open End™ Technical Overview

Open End 2006 5 (28)

1. Introduction
The workhorse of the Open End™1 system is the database and the supporting software
which is called the “Infinite Filing Cabinet”, the IFC™. The name stems from the idea that
the IFC can be imagined as an infinitely big filing cabinet where any amount of
information can be stored. Just like with an ordinary filing cabinet (the useful kind),
access to items stored inside is quick and easy.

Information is organised as objects and the IFC is the persistent storage of these objects.

The IFC will contain all the information concerning a particular project, even if that project
is done and dead years ago. There is no way of putting information into the system other
than through the IFC, even though information which exists outside (e.g. an external
customer database etc.) can be referred to from inside the IFC. However, one must
remember that any external information is outside the reach of the IFC and thus can
change or even disappear with no notice of the fact being given to the IFC, i.e. the
information might very well be inaccurate.

Within the IFC all information is always consistent and instantly available2.

2. IFC Basics
The IFC acts as a database which informs its clients of changes within the system.
The immediate “partner” in this communication scheme is the Business Logic, the BL.
There will be several references to the BL throughout the text; however, the IFC is
totally self-contained and works as a stand-alone program. Any application that needs
persistent Python objects with a sophisticated subscription mechanism can use the
services of the IFC.

2.1 IFC Object persistence (deleting objects)
Much in line with modern thinking on the subject of data persistency, an object that is
entered to the IFC will remain there forever unless removed by external means.
There’s absolutely no way of removing an object from the IFC permanently from within
Open End. Objects can be marked as deleted, but they will still exist in the database for
later referencing.

Why all this fancy footwork when a simple delete function that anyone could use would
appear to be more efficient? The reason is that disks are cheap and mistakes are
expensive. It makes a lot more sense to keep as much information in the database,
thereby preserving an unbroken trace of all information, than to throw away what
effectively is hard-won experience which often enough has to be earned again at some
later time.

The option where you can erase an object allows for contingencies where large amounts
of data has been added which later on turns out to not be necessary in order to preserve
the experience of that particular problem. Removing the excess data trims the size of the
database without affecting the problem structure as such.

Entirely removing objects from the IFC should be a very rare event which really only is
used when truly erroneous or misplaced data has been entered into the IFC.

1 Open EndTM – A platform for building multi-user applications for case handling, issue tracking, project

management and other workflow oriented endeavours.

2 As instantly as the system limitations, e.g. network bandwidth allows.

WHITE PAPER Open End™ Technical Overview

Open End 2006 6 (28)

2.2 The IFC from the database point of view
Given the way a relational database works, and the fact that we as much as possible
want to avoid using features of one particular database, there are some considerations
that have to be taken into account when creating an object model that in the end lives
inside such a relational database. This chapter deals with our way of solving certain
problems of IFC object implementation in the relational database.

2.2.1 ER graph use with relational databases
In a relational database, data is stored in tables. Each row in a table constitutes one
record, one data collection for that specific table. Each record can hold a number of fields
of data, arranged as columns in the row. However, one field can only hold one single data
item as such, e.g. one integer or one string etc.

This means that when one wants to represent lists of several instances of a data type,
one has to make some kind of database construction based on several records, possibly
in more than one table.

A typical such construct becomes necessary when one wants to link one record in a table
to several others, a so called one to many relation. In the ER (entity relation) graphs used
later in this document, such a relation is represented like this, where a record in table A
refers to several instances of records in table B, but a record in table B only can refer to
one instance of a record A:

Example 1:

This is accomplished by having a field in B referring to an A record, thus more than one
record instance of B can refer to a single record A. Please notice that there is no
information stored in A about this relation whatsoever. This means that in order to obtain
the list of B records that refer to a specific record in A, one has to perform a database
query accessing all table B records and examining their contents; it’s not a simple matter
of obtaining a field from one single record.

The fully drawn line staring from a specific table in an ER graph indicates that the relation
must exist. In the graph above every record in table A has to have at least one record B
referring to it, and every record B has to refer to one record A.

In the graph below, the dashed line starting in table A indicates that a specific record A
may or may not have a record B referring to it, but the fully drawn line from the B table still
means that every record B has to refer to one record A.

Example 2:

B A

B A

WHITE PAPER Open End™ Technical Overview

Open End 2006 7 (28)

It becomes more complicated when one has a need for many to many relations; when
records in both tables A and B above should be able to refer to many records of the other
table type.

Example 3:

This is accomplished by the use of a helper table put in between, playing the part of the
oneto many relation table in both directions. Obviously, this means that searching for
records in B referred to by records in A will be that much more costly, since yet another
table is involved, but this really is the only way of solving the problem. Again obviously,
it’s wise to design object models with as few many to many relations as possible simply
because queries become so costly.

Example 4:

When drawing ER graphs, the above construct is usually taken for granted and is never
explicitly drawn. If a table is present in an ER graph, drawn like the one above, it is
because it fills a purpose other than to work merely as a many to many relation
workaround.

In the software making use of the database it is more convenient to add a middle layer
that hides these considerations as much as possible. For that reason, objecs
representing records of table A in the first graph above should contain an attribute that is
a list of all records of type B that is referring to it, having been invisibly queried separately
from the database when the record A was obtained. It also means that when storing an
object of type A, one has to either remember the original list of B records that was
referring to it and compare that to the currently valid one in the object, or perform a new
query in the database, and then perform operations on all records of type B that has
changed according to the list in the object A.

2.2.2 Common IFC table contents
The information stored in the IFC is comprised of a about a dozen object types. Not all of
these are intended to be available directly to the outside world; some act in conjunction to
support certain types of data available through others.

B A

B A AB

WHITE PAPER Open End™ Technical Overview

Open End 2006 8 (28)

Most of these tables share a number of common traits, or more specifically common
fields.

All tables that are intended to be referenced from “outside” the IFC have this in common:

• An identification field named “id”, uniquely identifying the record (throughout the
database, for any and all tables) with a 64 bit id number. Note that all changed
versions of the same record also have the same id number in the same table, but that
the “deprecated” field is used to distinguish the currently valid record, as discussed
later in this chapter.

• Most have a “name” field; a string which is unique within the table for valid records.

• Two fields named “created” and “deprecated”, which are used to handle the “infinity”
part of the IFC concept. The “created” record points to a log table record where the
details regarding the creation of the record are stored. The “deprecated” record is set
to NULL for the active (currently valid) record. When a record is removed, a new log
entry is created detailing the circumstances (who, why and when) of the removal and
a reference to it is stored in the “deprecated” field. When a record is changed, the
same procedure is followed except that all the contents of the record is copied to a
new row with the deprecated field set to NULL and the “created” record set to point to
the “deprecated” log entry of the previous record. Thus, to find the currently valid
record in a table, look for the id (and/or name) of the field in the row where the
“deprecated” field is set to NULL. In order to rollback the database, just follow the trail
of “created”/”deprecated” entries back in time.

Action log ER graph:

ACTLOG (IFCO)

Created

Deprecated

WHITE PAPER Open End™ Technical Overview

Open End 2006 9 (28)

3. The IFC data structure
IFC Entity Relations Graph:

This graph describes (almost) all tables and relations used by the system. It will be
broken down into each functional piece later on in the text and described in detail.

Each box in the above diagram represents an IFC object, or IFCO.

The diagram omits one very important detail, which is why a small digression is
necessary, in order to make the following ER graphs understandable.

All IFCOs in the diagram, with the exception of the one labelled “DO”, only contain
information regarding relations to other IFCOs along with some special information
determined by their use in the system. User data - what the average customer would
like to store in the system - can only be contained in the aforementioned DO (Data
Object) structure.

Data stored in an IFCO table directly is called an intrinsic value. Intinsics can only exist as
single values - one value per IFCO.

Data stored in a DO structure is called a tuple value. Tuples are always lists, they can be
from zero to thousands of values.

3.1 Attributes
Data in the IFC is available as intrinsics and tuples, but only to the IFC and the IFC-
oriented part of the BL. For the client and the client-oriented part a transformation of
these intrinsics and tuples are made into something called attributes.

In this text there are references to intrinsics, tuples and attributes depending on the
context. If the data is supposed to be used by the IFC or the IFC-oriented part of the BL,
it’s referred to as intrinsics or tuples. If it’s being used by the client or the client-oriented
part of the BL, it’s referred to as attributes.

WHITE PAPER Open End™ Technical Overview

Open End 2006 10 (28)

3.2 Business Logic Module, BLM
The specifics of a business, the hierarchy of a company, the intrinsics of how daily tasks
are handled are stored as Business Logic Modules, BLMs, in the IFC. The BLMs convert
the DO structures into objects that the user in front of the screen can access through his
client, and from the client back into DO structures that can be stored in the IFC. This, in
fact, is the one of the main purposes of the BL.

A specific BLM organises a number of Task Object Classes, TOCs, which represents the
individual data types comprising a BLM. The base BLM, for instance, defines a specific
TOC for all of the DO structures used to contain user and access control information.
Users access objects as instances based on TOCs, so called Task Object Instances,
TOIs.

TOCs may inherit other TOCs. What is inherited then is all attributes from the inherited
TOC which cannot be changed.

All and every DO structure that is available to a user as a TOI has to have a BLM: TOC
specification in order for the BL to know how to handle them. A user type IFCO is
specified as base: user.

The BLM object defines these intrinsics:

• id
A unique 64 bit identifier. Please notice that as with all IDs used in any table, it’s
unique only in conjunction with one or more entries, always the deprecated value but
sometimes there also exists a unique index in order to establish some kind of context
rule.

• name
A name that is unique among non-deprecated BLM objects. The name may exist in
duplicates among the deprecated objects.

• desc
A description of the BLM, its purpose and usage.

• code
The BLM python code, stored as a BLOB.

• version
The current version of the python code, for matching purposes at start-up of the BL.

• created/deprecated
Entries implementing the “infinite” property of the IFC, as described earlier.

WHITE PAPER Open End™ Technical Overview

Open End 2006 11 (28)

3.3 Task Object Class, TOC
The purpose of the Task Object Class, the TOC, is to represent the individual data types
that make up an entire BLM. The TOC object in the IFC only contains a reference to its
parent BLM, all actual functionality exists in the python code which resides in the BLM
and is executed in the BL.

The BLM object defines these intrinsics:

• id
A unique (id + deprecated) 64 bit identifier.

• name
A name that is unique among non-deprecated TOC objects. The name may exist in
duplicates among the deprecated objects.

• blm_id
The parent BLM.

• basetoc
A reference to the inherited TOC.

• created/deprecated
Entries implementing the “infinite” property of the IFC, as described earlier.

3.4 Data Object, DO
The Data Object, the DO, is the workhorse of the IFC data object set. The structure
based on this object is used to store most types of user-defined data and thereby
comprises the core of almost all types of TOCs. Exactly how the DO structure stores
attributes will be discussed in a later chapter, it’s enough here to know that it does in
some way.

The DO object defines these intrinsics:

• id
A unique (id + deprecated) 64 bit identifier.

• toc_id
A reference to the TOC specifying the contents of the DO structure.

• created/deprecated
Entries implementing the “infinite” property of the IFC, as described earlier.

The DO structure may contain attributes of the following types:

• ATypeBool: Integer

• ATypeInt : Integer

• ATypeFloat: Float

• ATypeStr: String

• ATypeBlob: Blob

• ATypeDate: Integer

• ATypeTime: Integer

• ATypeTimestamp: Float

• AtypeTOIRef: Integer

WHITE PAPER Open End™ Technical Overview

Open End 2006 12 (28)

3.5 Object access implementation
Access control is a part of the BL; the only role of the IFC is to supply the objects that
control access to other objects. The following description illustrates how the different
object types interact. The example shows the Base BLM, which contains the definition of
users and all the objects that control user access to all objects in the system (including all
the Base BLM objects themselves).

Access Control Relations Graph:

The above relations graph describes the access control system. Objects in the graph that
are implemented as DO structures have a small capital ’D’ in their top left corner.

A user of the system needs to have a corresponding USER entry containing various
parameters like name, authorisation data etc. As can be seen, users can be grouped into
user groups (UGs).

UGs are used to implement a company hierarchy. They contain a name and a
description. UGs can be grouped into other UGs.

DOs can specify an Access Classification, an AC, to determine which type of object it
belongs to.

The AC can be seen very much as a UG but used to organise DOs instead. For the
moment we don’t allow hierarchies of ACs.

The path from a UG to an AC determines the access for a specific USER. The path is
formed by tying together a UG and an AC with an Object Permission Entry, an OPE.
There can only be one OPE between a specific UG and AC.

The OPE contains references to one or more Access Permission Entries, APEs.

An APE contains information on the format: blm: toc: attribute: permission. This makes it
possible to specify exactly which permission to grant to a specific attribute in a certain
TOC. As the OPE can contain references to several APEs, its possible to define a set of

WHITE PAPER Open End™ Technical Overview

Open End 2006 13 (28)

standard permissions which then can be combined to form specific solutions for different
types of access within a company hierarchy.

3.6 Log objects
A DO structure is just a framework for containing data. The BL makes use of the
structuring mechanism in order to build problem relations.

3.6.1 Action Log Object
Any status change of any IFCO causes a log entry to be created. The LOs are tied to an
IFCO so that the entire chain of events concerning that IFCO can be reconstructed.

For practical purposes, the LOs are stored in the IFC, but users can not manipulate LOs
directly.

LOs consist of the following entries:

• A reference to the relevant IFCO.

• The event that occurred, such as creation, completion, deletion etc.

• The user session that caused the event.

• A timestamp.

The log is also used to acquire information about creation time and creator of IFCOs,
information which is not stored directly in the entities themselves.

Access to an individual LO is the same as the access state of the referenced IFCO.

3.7 Substructures in the IFC

3.7.1 Tuple list

Tuple ER Graph:

A tuple is a data structure which associates one value, the key, with another value, the
data. For example the tuple { “finger” : 7 } associates the value 7 with the key “finger”. In
our implementation, a key is always a string while the value can be of almost any type.

WHITE PAPER Open End™ Technical Overview

Open End 2006 14 (28)

A tuple list is tied to each DO, as seen above. A tuple list is an extendable list of
properties associated with an entity. It’s the BL which defines which properties are
handled.

The information in the tuple list is typically the subject for searches in the IFC.

The tuple value can be a number of different things:

• string

• integer

• float

• boolean

• time/date value

• reference to another object

While any number of { key : value } pairs can be stored in a tuple list, some names are to
be considered as standardized and should not be used for any purpose outside the
definition. There are also a few reserved tuple key names which the BL won’t accept.

4. Connection management
Individual users can’t connect to the IFC directly; they have to work through a Business
Logic layer. However, information about connected BLs and user clients is stored in the
IFC for the purpose of ensuring security and efficiency.

4.1 Business logic connections and security
When a BL attempts to connect, a private-key encrypted cookie is sent to the IFC, which
tries to decrypt it using a previously stored public-key component. If the cookie can be
decrypted successfully, the BL is allowed to establish a connection.

Several BLs may connect to the IFC at one time.

4.2 User client connections and security
When a user client attempts to connect to a BL, a login-query is sent to the IFC using
private/public key authorization methods as with the BL. If the client successfully
identifies itself, the client-BL connection is stored in an internal list as long as the BL-IFC
connection remains valid, or until the BL requests the removal of the entry.

The BL requests the removal of a client entry when a client disconnects from the BL.

When the client as part of the normal work process requests information from the IFC, the
connection is considered to be secure and no further user connection validation is
necessary.

WHITE PAPER Open End™ Technical Overview

Open End 2006 15 (28)

5. Object interface
The IFC provides three basic operations to find, retrieve, change and create objects. The
first operation is known as a query which specifies sets of tests to be evaluated against
various TOCs and returns a list of object identifiers which satisfy the tests. These
identifiers are used in turn refer to the objects themselves.

Using an object’s identifier a request for or a change to an object’s data can be made.

Creation of an object is viewed as modification of the non existent object to a supplied set
of values. Change and creation are implemented by the commit operation.

Queries and requests are further divided into two classes: transients and subscriptions.
The former is treated as a one-shot enquiry while the later indicates that future changes
should be notified as they occur. These two classes are not applied to commits, although
it is the commit that triggers notification of change.

5.1 Queries
Object queries are constructed from a query object. This consists of a list of query
condition groups which specify expressions to be evaluated against a TOC. Each
expression in the query condition group is and-ed with the next as it is evaluated from left
to right. Such an expression is termed a query condition which consists of an attribute or
tuple name, operator and value allowing constructs of the form:

QC1 and QC2 and QC3 and ... and QCn
3

Query condition operators are binary operators of the set:

• equality
• inequality
• greater than
• less than
• greater than or equality
• less than or equality
• set membership
• not a set member
Simple pattern matching is also supported, allowing combinations of:

• a literal character
• any character
• zero or more characters
A query condition group may contain zero query conditions and in this case it is an
implicit test which is true for all the objects in the TOC.

A query object may contain multiple query condition groups and these are or-ed together
allowing constructs of the form:

CG1 or CG2 or CG3or ... or CGn
4

3 Where QC is a query condition.
4 Where CG is a query condition group.

WHITE PAPER Open End™ Technical Overview

Open End 2006 16 (28)

Using both constructs allow queries of the form:

action5 == ’Run diagnostics on printer’

or

action == ’Repair printer’ and state6 == ’Finished’

The above query object consists of two query conditions groups which are implicitly or-ed
together. The first has one query condition while the second has two. The query
conditions in the second are implicitly and-ed together. The query is in disjunctive normal
form. This simplifies parsing of the query as no operator presence problems arise; there
is only ever one operator in any given context.

When a query is made the query object is interpreted into a database query7 and the
query is run. The result is a list of object identifiers and they are returned to the
requesting BL. This list of object identifiers is known as a result set. This is the simple
case of a transent query where neither the query nor the result set are recorded.

Should the query be a subscription both the query object and the result set are recorded.
Future changes to objects in the IFC may cause objects to be added to or deleted from
result sets. Such a change is termed a result set change. When such changes occur they
are forwarded to the appropriate BLs. This provides dynamic notification of changes to
results sets.

5.2 Requests
Objects are requested from the IFC by supplying their indentifiers. Once the object is
found it is returned to the requesting BL. This is the simple case of a transient request.

Should the request be a subscrpion the IFC notes that the requesting BL wishes to be
informed when the object is modified. When such a modification occurs the modified
object is sent to all the BLs that have subscribed to this object. This provides dynamic
notification of changes to objects.

5.3 Commits
A commit is a creation of a new object and/or a modification to an existing object. It
consists of a set of objects to be created or modified. All objects in the set are viewed to
be part of a transaction. The transaction ensures that either all objects are processed
successfully or none are. Should any operation fail no modification to the IFC’s state is
made.

There is no explicit transaction setup, completion or revocation. It is assumed that all the
objects taking part in a single commit form a transaction. The IFC enforces no other
structure; this is a problem to be resolved by the commiter.

5 A TOC attribute or tuple name.
6 Another TOC attribute or intrinsic name.
7 The query object is analysed and turned into the relevant SQL.

WHITE PAPER Open End™ Technical Overview

Open End 2006 17 (28)

Objects to be committed are referred to by their identifier. Attributes to be created or
modified are supplied and this data is applied to the existing data in the object. Should
new objects require creation a set of unique temporary identifiers, one per object,
assigned by the BL, are used. These are then mapped to new object identifiers and this
mapping is returned at the conclusion of a successful commit.

As the commit is being processed incremental state information is saved so that commit
related operations can be carried out should the commit succeed. Should it fail the
information is discarded.

Once a commit has been successfully processed change notification and events are
processed.

6. Object cache
To improve the efficiency of object access, objects are cached by the IFC. As objects are
requested or created they are stored in a simple cache. The object’s identifier is used to
refer to it in the cache. To minimise the amount of wastage in the cache only object
attributes that were requested, created or modified are cached. Should the object exist in
the cache but a particular requested attribute be missing it is added.

6.1 Basic design
The size of the cache is fixed and when the high waer mark is exceeded it is analysed
and garbage collected until its size is less than the low water mark. This approach is used
to ensure that garbage collection yields some useful result for the amount of effort
expended. Garbage collection is assumed to be expensive so the high water value is
95%8 while the lowwater value is 80% of the cache size. These values are essentially
arbitrary and can be changed, if necessary.

As an object traverses the cache three things are recorded:

1. Current size of the cached object (not the total size).

2. Real time cost spent during database operations for the object.

3. The outstanding requestors with subscriptions for the object.

This information is used to manage garbage collection of the cache. The current size is
used to calculate how full the cache is. Once garbage collection begins the cache is
analysed and the object’s cost is used to determine should it stay in the cache or not. The
cost of the object is decayed as a function of the mean obect cost, a value calculated to
be the average cost of requesting objects from the database in the recent past.
Periodically this value is recalculated so that it reflects a value that is relevant to the
objects in the cache. Again this value is arbitrary (currently 128 object reads from the
database) but can be changed.

8 This value was chosen based on a 5% overhead for maintaining the cached objects.

WHITE PAPER Open End™ Technical Overview

Open End 2006 18 (28)

How worthy an object is of remaining in the cache is further mitigated by the number of
subscriptions it has. A delta value is calculated from the mean object cost divided by 2
and that value is divided by the number of subscriptions. More subscriptions indicate
more interest in the object so it is deemed a better choice to retain. The delta is then
subtracted from the object’s cost. Should the object cost drop to zero or become
negative, the object is removed from the cache.

Removal from the cache is complicated by the outstanding subscriptions for the object.
They are recorded with the cached object and must be maintained. In this case the
object’s data is removed but its remaining cache entry (including subscription information)
is retained. Its cost is set to unknown9 and all that is left is a placemarker. When the last
subscription is removed this placemarker is removed.

6.2 Interface
An object based interface is provided to the cache. The following operations are provided:

• Find an object in the cache from its identifier. This may return that the object is not in
the cache.

• Get an object with optionally specified attributes. If no attributes are specified then all
are returned. Either the object is found in the cache or it is fetched from the database
and cached.

• Fetch an object with optionally specified attributes. This is similar to the previous
operation except it is tied to a requestor. If the request is a subscription the cached
object is tagged with the requestor.

• Update an object from a supplied set of values, avoiding unnecessary database
access. If the object is not present in the cache it is added. It is used during commits
to synchronise the cached object with the data in the database. It is performed after a
successful commit and is part of the chain of dynamic change notification.

• Finish with an object and return it to the cache. A parameter can specify if the object
should be forcibly purged from the cache.

Operations that return an object must be paired with a call to its finish method. An object
cannot be garbage collected while a call to its finish method is pending.

6.3 Overall management
Calling an object’s finish method also maintains a least recently used [LRU] ordering of
the cache and triggers garbage collection. When garbage collection is required a one
handed clock scan of all the objects in the LRU is performed. Older objects are found
sooner in the scan because the finish method places the object at the tail of the LRU.10
The scan continues until garbage collection is no longer necessary. The design of the
cache ensures that even though several scans of the cache may take place the scan will
terminate.

9 Chosen to be a value smaller than the absolute minimum cost to retrieve an object. An object’s cost is

ensured to never be less than this minimum.
10 The LRU list is actually a doubly linked cyclic data structure. The tail can be considered to be just before

the clock hand, while the head is the current position.

WHITE PAPER Open End™ Technical Overview

Open End 2006 19 (28)

A feature of the finish method is that it notices if the object had already been placed in the
LRU. If this is true the position is not modified. This is to allow arbitrary placement based
on some other heuristic; objects could be penalised by being placed just in front of the
clock hand so they would be analysed, possibly being discarded, sooner.

A design goal of the cache was to use simple algorithms that were based on sound
theory. The combination of decayed cost and LRU based management is to enable
costly, frequently used objects to remain in the cache longer than cheaper, less likely to
be used objects.

6.4 Resizing
The cache is also designed so that it can be dynamically resized. It can be grown or
shrunk at run time, although there is currently no way to instigate this. Should it be shrunk
it is garbage collected in the normal way, if necessary.

7. Dynamic change notification
There are two types of changes that the IFC notifies dynamically. The first is change to
an object while the second is a change to a result set. Notification of changes to an object
is trivial in that all that is required is a list of BLs that require notification. Once a change
to an object is made each BL in this list is notified. Detection of a result set change is
considerably more difficult.

It should be remembered that change notification is only provided to queries and requests
that were subscriptions and this section pertains only to them.

7.1 Result set changes
A result set is created when a query has been run in the database. Once it has been
run the query and the result set are recorded. A naive approach to detecting result set
changes would be to re-run all the queries when an object is modified. Clearly, this is
unacceptable because of the unreasonable cost involved. The goal is to find a minimal
subset of queries that the modified object may satisfy.

However, it is somewhat more complex that that. The result of modifying an object
can be:

1. Addition of the object to one or more result sets

2. Deletion of the object from one or more result sets

3. No change to any result set

Cases 1 and 2 can even apply to the same result set which entails filtering of redundant
additions and deletions as well as resolution of the resulting conflicts. A conflict occurs
when an object is subject to an addition and a deletion. This occurs when one query
condition group results in addition while another results in deletion. In this case additions
take priority over deletions.

7.2 Finding a minimal subset of queries
As query conditions groups are or-ed together it is possible to view all of them as one
query object. What needs to be maintained is an association with the corresponding

WHITE PAPER Open End™ Technical Overview

Open End 2006 20 (28)

result set. Once a group is evaluated with the data in the object then the object falls into
one of the above three cases. A naive approach could be used and all groups could be
evaluated against the modified object and the resulting additions and deletions could be
filtered. However, it would be prohibitively expensive.

If the object is examined it can be seen that it consists of:

1. a TOC

2. attribute names

3. values of the attributes

This limits the possible set of groups that it can be matched by because it is constrained
by its TOC and the TOC attribute names.

If a query condition group is examined it can be seen that it consists of:

1. a TOC

2. attribute names

3. comparison operators

4. values to be compared

From this information it can be seen that both share the TOC as well as the attribute
names. Therefore, a subset of all the groups can be constructed from the groups that
contain the TOC as well as the attribute names. This subset is the set of groups that
could affect the membership of the object to a result set. All other groups do not contain
the requisite information to affect result set membership.

When a query is made each group is analysed to construct a list of (TOC, name) pairs
where names are selected from the attribute names. Each pair is then used to reference
a list of groups that contain the TOC and the name:

TOCt, namen : CG1 ... CGn

Each group in turn are linked to their corresponding result set.

In the case where no query conditions are present an entry is constructed from the TOC
and the null name.

7.3 Evaluating query condition groups with a modified object
When an object is modified it is tested with the set of possible query condition groups that
could include it or exclude it from a result set. To construct this the object’s TOC as well
as the attribute names are used to generate a list of (TOC, name) pairs. These are used
to find corresponding lists of query condition groups.

In addition to this the (TOC, null) pair is also tried. This additional case only yields results
if there exists a query condition group with no query conditions.

From the resulting set of query condition groups each is evaluated in turn. The evaluation
could be performed by the database but this would be inefficient because the query
would examine far more data than necessary. This case is special in that one object is
being tested, instead of a set of queries being run against the whole database.

WHITE PAPER Open End™ Technical Overview

Open End 2006 21 (28)

The outcome of the evaluation is an addition list and a deletion list, each containing
references to result sets. Should a query condition group evaluate to true a reference to
its result set is added to the addition list, otherwise the reference is added to the deletion
list. Both are then examined to create a list of result sets that have changed and these
changes are then returned to the appropriate BLs.

The addition list is examined first and result sets referenced in this list are added to the
changed list iff:

1. The object is not in the result set.

2. The result set is not in the changed list.

Condition 1 ensures that the object is not added to a result set that it already exists in.

The deletion list is examined next and result sets referenced in the list are added to the
changed list iff:

1. The result set is not in the addition list.

2. The result set is not in the changed list.

Condition 1 ensures that addition takes precedence over deletion because the
requirement for addition is that at least one query condition group is true despite a
potential plethora of groups evaluating to false.

In both cases, condition 2 is used to ensure references to a changed result set occur in
the change list only once.

The changed list is then examined and the result sets referenced by it are dispatched to
the appropriate BLs.

7.4 Evaluation Optimisations
There are two optimisations that are used to minimise the set of redundant additions and
deletions. This is done as the query condition groups are evaluated.

The first optimisation relies on the premise that a reference to a result set in the addition
list renders further tests unnecessary. This operation is idempotent in that more than one
addition is the same as exactly one addition. As addition takes preference over deletion,
presence of the result set in the deletion list is not an issue so further evaluation can be
avoided. This optimisation is designed to minimise the number of query condition group
evaluations.

The second optimisation is similar in that it relies on the premise that deletion is also
idempotent. Once a result set is referenced by the deletions list further references serve
no purpose. This is slightly different than the addition case because this occurs after an
evaluation; it only serves to minimise the size of the deletion list.

8. Events mechanism
Events are actions that are taken when a particular condition is true. A condition
comprises of a set of expressions which describe an object’s state, state transition or
state at a given time.

WHITE PAPER Open End™ Technical Overview

Open End 2006 22 (28)

This is further generalised to the state of a set of objects, allowing arbitrarily complex
expressions to be constructed. A state is considered to be the value of an attribute. It is
not restricted to any one attribute.

An event object is the only object that is treated specially by the IFC. In general, the IFC
has no idea what the purpose of a given object is, nor does it have any idea about what
purpose the various attributes serve. All it needs to know is how to manage the mapping
from an object’s TOC to the database implementation. This special handling of event
objects can only be done by the IFC as it is the interface to the database and the arbiter
who can manages multiple BLs who have no idea of each other’s existence.

As event objects are essentially objects like any other they can be created, searched for,
requested and modified using the existing interface; no special interface or extra
overhead is involved. What makes an event object special is how the IFC treats it, which
is invisible to the BL.

An event consists of the following components:

• Issuing BL

• Corresponding BLM

• User who created it

• Transition expressions

• Object identifiers of objects referenced in the transitions expressions11

• Action to take

As objects are modified or transition expression timers expire relevant events’ transition
expressions are evaluated. Should an expression evaluate to true the event is dispatched
to the issuing BL. If it is not currently active the event is tagged to be true and will be
dispatched to the BL when it connects to the IFC. The BL organises for the event’s action
to be executed in the context of the user who created it.

This describes the basic event mechanism with is used to implement rule based events.
The basic mechanism is triggered by object modification or time while rule based events
are triggered by object creation. A rule based event is triggered when a new object is
created and its transition expressions evaluate to true, usually in reference to the values
in the new object.

8.1 Transition expressions
Transitions expressions consist of a list of and-ed conditions that must be satisfied for the
event to be dispatched.

Components of a transition expression are:

• Object identifier

• Attribute name

• Operator

• Value(s)

11 This are calculated by the IFC.

WHITE PAPER Open End™ Technical Overview

Open End 2006 23 (28)

A time can be specified so that an expression can be evaluated at a given time. This time
is intrinsically linked with its operator.

The operators consist of:

• IN

The attribute is equal to the value.

• ENTERS

The attribute has been modified to be the value.

• LEAVES

The attribute had the value before it was modified.

• CHANGES

The attribute changes from one value to another. In this case current and next values are
specified.

• AT

The attribute has the value at a specified time.

The AT operator has an associated time for the test to be done. Other than this it
equivalent to the IN operator.

8.2 Management
Efficient management of events is necessary so that acceptable performance is
achieved. In the general case, every commit involves examining all the potentially
triggerable events and evaluating them. Of course this would become prohibitively
expensive as the number of events grow, so a mechanism must be used to quickly target
events that could be triggered.

A similar mechanism used with result set changes is re-employed to quickly find all the
events a created or modified object refer to. For each case an index12 is used to quickly
find the relevant events. The difference between the two cases is the type of key used
with the index.

On creation of an object all the rule based events referring to the objects TOC are picked;
the key is the TOC:

TOCt : Event1 ... Eventn

Modification is slightly more complex because both the object identifier and its attributes
must be matched against similar values contained in event transition expressions; the
keys are made from the object identifier and its modified attributes:

Objectid , Attribute : Event1 ... Eventn

Both these structures must be updated as event objects are modified.

12 See 9.

WHITE PAPER Open End™ Technical Overview

Open End 2006 24 (28)

8.3 Timers
The management of timed events is handled by a different mechanism. Obviously they
cannot be handled as commits are processed as they are completely unrelated. A list of
timed events is maintained which is sorted by time; earliest at the front, latest at the end.

When a timed transition expression is discovered it is added to the list. If necessary, a
call to a function to evaluate the event’s transition expressions at the allotted time is
organised. If they evaluate to true the event is dispatched to the BL. If they evaluate to
false the event discarded as it can never evaluate to true as it has failed at an allocated
point in time.

This structure must also be updated as event objects are added, modified and as timed
events are evaluated.

8.4 Rule based events
Rule based events are very similar to basic events but with a few exceptions:

• An attribute which indicates the TOC the event refers to.

• Transition expressions which implicitly refer to the created object.

• The only supported operator is IN.

When a new object is created its TOC is used to see if there are rule based events for
that TOC. If so, each in turn is evaluated. Should it evaluate to be true then the event is
cloned. Because a rule based event is so similar to a basic event it can be copied an then
treated by the normal event processing code.

Cloning involves:

• Copying the rule based event

• Removal of the attribute which indicates the TOC the event refers to.

• Allocation of a new object identifier

A cloned event is an object that can be committed to the database. It can be processed
normally after being committed to the database. Should one of the committing objects fail
to commit all previously committed object are rolled back. This applies to cloned events
that have been committed because they fall into the same transaction as the objects for
committal. Hence transaction semantics are maintained.

9. Indexes
The concept of an index was developed to enable rapid retrieval of a minimal subset.
When faced with the problem of finding query condition groups that may refer to a
modified object the insight was made that if a key could be constructed from a query
condition and then recreated when an object was modified it would be possible to find all
the relevant query condition groups quickly. The same problem arose when a similar
solution to event management was required.

Once the problem of key construction was solved the implementation of an index was
straightforward. The IFC is written in Python so it was obvious that a dictionary,13 indexed

13 An associative array which can be indexed by arbitrary data.

WHITE PAPER Open End™ Technical Overview

Open End 2006 25 (28)

by the key, referring to a list of the related data items would be ideal. Dictionaries allow
an arbitrary key to quickly locate the related data. As there were more than one use for
such a data structure it was implemented in a generic way as a class.

An index’s interface is:

• add(key, data)14

Uniquely add data to the list of items located by key.

• has_key(key)
Returns true if any data can be located by key.

• get(key, default)
Return the list of items located by key. If none exist then return default.

• remove(key, data)
Remove data from the list of items located by key.

Both key and data are arbitrary values. Should multiple values be required to construct
a key the method used is to construct the key from a tuple containing all the values.
Data contained in the lists is normally of the same type, but there is no restriction that it
need be.

These methods closely follow normal Python dictionary methods.

10. Communication objects
The object interface is managed by entities known as communication objects. Each
contains an underlying data object which is manipulated by a set of associated signaling
methods. The number of methods is small and is built on an activate, update and
deactivate model. These objects should not be confused with objects stored by the IFC.

• Activate signals the creation of a new communications object.

• Update signals that the data associated with the communications object should be
analysed and updated.

• Deactivate signals that an existing communication object will be destroyed.

A typical communication object transaction consists of an activate, zero or more updates
followed by a deactivate. The update method is used to both access and create objects in
the IFC, instead of having explicit access and create methods. This approach is similar to
the idea that creation can be implemented by modification.

10.1 Marshaling
Marshaling is the layer between the Communication Objects and query and object
management. It analyses the requested operation and dispatches it in the correct
manner. Only queries and requests are managed by this layer while commits take a
more direct path.

14 This could have been implemented by Python’s __setitem__ method but as it is not strict assignment an

explicit method was chosen to avoid confusion.

WHITE PAPER Open End™ Technical Overview

Open End 2006 26 (28)

10.1.1 Query Marshaling
On query activation the query is run against the database and its result set is returned to
the BL. Should the query be a subscription it and its result set are recorded and persist
until it is deactivated.

On each update operation the updated query is run, results are returned and it may also
be recorded. This allows for a query to be modified.

On deactivation the data pertaining to the query is destroyed.

10.1.2 Request Marshaling
On request activation the requested object is found and returned to the BL. If the request
is a subscription the requesting communications object is recorded by the object
manager.

11. Platform
The IFC has been written in Python, using the Twisted framework and
pyOpenSSL/OpenSSL for communication with the BL. Psycopg is used as the interface
to the relational database. Our current implementation uses PostgreSQL as the relational
database engine. However, since we use a fairly standard set of SQL, with very few
implementation specific constructs, a port to another database engine should be a fairly
small matter.

12. Performance
As the amount of data at the installation of our pilot customer grew to over 20,000
objects, we discovered that the IFC was surprisingly slow, sometimes taking seconds to
assemble a single object. The slowness was most notable right after a reboot, indicating
that the bottleneck was in the RDBMS rather than in the code of the IFC itself. Otherwise
cached objects would show the same slowness as the ones retrieved from the database.
Analysis has recently shown that unless you explicitly cast incoming 32 bit integers (id’s
in particular) to 64 bit integers, PostgreSQL will perform a linear search through the table
containing 64 bit integer keys, instead of using the intended index.

For this reason, we only have very limited data on performance. However, our pilot
customer runs the system with 50 concurrent users. After fixing the cast problem,
throughput has become quite reasonable.

13. Future directions
Currently we have a few ideas for future work with the IFC. Some of them are described
in this section.

13.1 Timesharing
Currently the IFC will handle query results, requested objects and commits in a strict first-
come, first-served order. This can lead to very long delays for small requests, if large

WHITE PAPER Open End™ Technical Overview

Open End 2006 27 (28)

requests are ahead in the queue. By serving request in a round-robin between different
clients, we should be able to reduce latency for small service requests.

13.2 Optimisation
Optimisation is an obvious field for future work. Currently a lot of time is spent in the
database because of the peculiar use that is made of a standard relation database.
Instead of having many tables, say one for each TOC, there are a small number (typically
4 to 6). As a result, these tables are heavily used and this is compounded by the fact that
no data is ever deleted from them.

A more mundane optimisation is to split the string table into one that contains tuples that
the RDBMS is able to index and one with longer strings that remains unindexed.
Currently, all strings are in an unindexed table and have to be searched for linearly.

13.3 Concurrency
The IFC of today is strictly single threaded and is only able to serve a single instance of
the BL. In a first step, we will allow more than one BL to be connected to the IFC at any
point in time. A later step will allow the IFC to service several requests in parallell. For
instance, it should be possible to serve objects out of the cache while waiting for the
RDBMS to supply data for non-cached objects.

We have also considered allowing several instances of the IFC to operate on the
database at once. However, this puts rather high demands on synchronization between
the instances of the IFC. We will avoid this step as long as we can maintain acceptable
performance with a single instance.

13.4 Redundancy
The Open End™ system is expected to be mission critical in many environments where it
is installed. By using a distributed RDBMS and a fail-over mechanism for the IFC and BL,
we should be able to provide a system with no single point of failure.

13.5 Query caching
It would be possible to maintain a cache of previously run queries and examine them
before going to the database. Currently this is not done but a prototype has been tested
and it has resulted in better performance. The cache comprised of only the currently
active result sets, but this could be extended.

13.6 Point in time access
Given that the IFC maintains every copy of every object it would be very useful to be able
to access them at an arbitrary point in time. This would allow a view of the world at some
time in the past and, as an added benefit, the ability to backup without interrupting normal
operation. A back of the envelope design has been done and it would appear that with a
slight addition to the information currently stored in the database such an interface could
be provided.

Queries would have an additional parameter to specify when (in time) the query should
be interpreted. Object identifiers would then consist of their traditional identifier plus a
version identifier. Query results would return these identifiers and requests would then
interpret these to return the object at that point in time.

WHITE PAPER Open End™ Technical Overview

Open End 2006 28 (28)

About Open End: Open End AB is a privately owned company with headquarters in Gothenburg in Sweden,
founded in January 2001. The company provides state-of-the-art frameworks for workflow and business
process applications.

Open End AB tel: +46-31-749.08.80
Norra Ågatan 10 fax: +46-31-749.08.81
SE-416 64 Göteborg email: info@openend.se
Sweden web: www.openend.se

Copyright 2003 Open End AB. All rights reserved. Open End, OPEN ENDcase, and IFC are trademarks of
Open End AB. Other product and brand names mentioned herein may be trademarks, registered
trademarks, and/or service marks of their respective owners. Specifications and product offerings are
subject to change without notice.

